Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sci Rep ; 13(1): 2269, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2235413

ABSTRACT

The "Everesting" challenge is a cycling activity in which a cyclist repeats a hill until accumulating an elevation gain equal to the elevation of Mount Everest in a single ride. The challenge experienced a surge in interest during the COVID-19 pandemic and the cancelation of cycling races around the world that prompted cyclists to pursue alternative, individual activities. The time to complete the Everesting challenge depends on the fitness and talent of the cyclist, but also on the length and gradient of the hill, among other parameters. Hence, preparing an Everesting attempt requires understanding the relationship between the Everesting parameters and the time to complete the challenge. We use web-scraping to compile a database of publicly available Everesting attempts, and we quantify and rank the parameters that determine the time to complete the challenge. We also use unsupervised machine learning algorithms to segment cyclists into distinct groups according to their characteristics and performance. We conclude that the power per unit body mass of the cyclist and the tradeoff between the gradient of the hill and the distance are the most important considerations when attempting the Everesting challenge. As such, elite cyclists best select a hill with gradient > 12%, whereas amateur and recreational cyclists best select a hill with gradient < 10% to minimize the time to complete the Everesting challenge.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , Algorithms , Bicycling , Exercise
2.
Advanced Intelligent Systems ; 3(12), 2021.
Article in English | ProQuest Central | ID: covidwho-1597207

ABSTRACT

Local or national crises, such as natural disasters, major infrastructure failures, and pandemics, pose dire threats to manufacturing. The concept of a rideshare‐like distributed network of consumer‐type 3D printers is proposed to address the limited ability of the industrial base to quickly respond to abrupt changes in critical product demand or to disruptions in manufacturing and supply‐chain capacity. The technical challenges that prevent the implementation of such a network are discussed, including 1) remote qualification of 3D printers, 2) dynamic routing algorithms with reactive and predictive components, which take advantage of real‐time information about current events that may affect the network, and 3) performance evaluation of the network. Furthermore, a cyber‐infrastructure that enables autonomous operation and reconfiguration of the network to render it “crisis‐proof” by minimizing human involvement is introduced. The concept of a distributed network of consumer‐type 3D printers allows anyone with a 3D printer and access to the internet to manufacture critical supplies, triggered by actual and predicted customer demand. Beyond crisis relief, distributed networks of manufacturing assets have broad relevance, and they can establish a virtual marketplace to exchange manufacturing capacity. Thus, this future manufacturing platform has the potential to transform how to manufacture for the masses.

SELECTION OF CITATIONS
SEARCH DETAIL